A REVISION of the FLOWER BUGS (HETEROPTERA ANTHOCORIDAE) of the AUSTRALIAN and ADJACENT PACIFIC REGIONS - PART II

Br GORDON F. GROSS, Assistant Entomologist, South Australian Mubeum

Fig. 1
Genus Cardastetuus Fieber
C'ardiastothus Fieber, 1860, Wien. Ent. Monat, 4, 266.
In addition to the reference in Van Duzee, 1917, Cat. Hem. Nth. Mexien, 295, there is Zimmerman, 1948, Tuseds of 13awaii, 178.

Body ohlong or ovate puhescent. Rostrum surpassing anterior coxac. Posterior margin of pronotum deeply exavate, lateral margins strather or simate. The chamel of the seent gland surpassing the midde of the pleurac and dineeted anteriad at the apex. Anterior tibiae ustally armed with a row of short dentieles on their inner side.

This gemus is very well represented in the lama of the regions dealt with here.

The species can be separated by the following key:
Kfy to Australian and Adjacen'j Regions Spfoles of CARdiAstethits

1. Head much wider than Jong \quad. inguitimus (hina and Myers

Mead nol, or little, wider than bonis -.... 2
2. Small species, less than 2 lun. in length (: poweri White. Larger species more than 2 min. in length B
3. Scoond segment of antennate not Jomer than width of head aseross eyes Second segment of anteman homger than width of head across eves Popp.
4. Pronotum almost reetangutar, anterior angles produced in fromt of the anterior margin (fig. 10) C. aridimpressus sp. noy. Proutun considerably broader posteriorly than anteriorly, interior angles not produced
5. Cunens in part rosaceons, male genitalia in the form of a targe jhate over 500μ long, temale genitalia also very long (ca, 350μ)
C. consors White

Conens not rosacsous, male genitalia do not exceed 350μ nor the fomale genitalia 250μ
(i. Brown species - . - . - .

Light species, mainly vellow ……… (incolncusis sp. nov.
7. Lateral margins of pronotum rounded with four long hairs on each side as well as the nsual short pilosity. Hind margin of pronotum virtually straight. Terminal pair of antennal segments fairly short (172-210:220-240) O. noumeensis sp. nov. Lateral margins of pronotum sinuate without four long hairs. Hind margin of pronotum excavate. Terminal pair of antemal segments longer (both 280-290) C. fulvescems (Walk.)

Gardiastethus inquilinus China and Myers

Cardiustethus inquitinus China and Myers, 1929, A.M.N.H., (10) 3, 119.
Oxat, dark brow shading to yellow brown towards apex of head and anterion lateral margins of pronoturs. First and secomb antemal segments, fostrum, and legs yellowish.

Head short and hroad, slightly longer tham interocular width (17: 13), rostrum reaching apox of aterior eoxate. Ratios of length of antemal segments 7:17:12:14 (same seale as above). Pronotum flattened with calli fechly elevated, distinetly but brondly impressed in the middle behind anterior lobe. Anterior margin straight, not emarginate.

Teft genital style of the male conspicuously large and spatholate, strongly widened and truncate at apex. Length 2.1 mm .

Loc. South Australia. The original spectimens were taken in the nest of an Oxyopid spider near Renmark, S.A.

Cardasterinus consoms White
Fig. 1, A-B
('ardiastethus consors White, 1879, Ent. Mo. Mag. 16, 143.
'Yellowish, elothed with tong pale hairs; head, pronot!m anteriorly and posteriorly, aud the abdomen dilutely reddish or yellowish fuscous; seutellum darker, cuncus exterolaterally losaceous; hemi-elytra more or less fusconebulons; first segment of the antemate apically infuscated, seend with the apical third fuscous black, third fuscous brown: membrane dilutely brownish fuscous with indistinet concolorous veins, near the base of the exterior vein a small triangular luteous spot. Vertex and the posterior part of the dise of the pronotum transversely rugulose, the latter with the lateral margins and the hind margin transversely punctate; scutellum subrugulose, the posterior lobe of the dise of the pronotum transversely impressed.

Length, $3 \mathrm{~mm} .{ }^{\text {. }}$ (translated from White's Latin description).
There are several specimens in the Woodward Collection available to the author for study which fit this description. From them the following standard measurements (in mierons) have been obtained.

Fig. 1. A-B, Cardiastethus consors White. Male, A, apex of abdomen from below. Female, F, apex of abdomen from below. C-D, Cardiastethus aridimpressus sp. nov. Male. C, head and pronotum; D, apex of abdomen from below. F.F, Cardiastethus lincolnensis sp. nov. Male. E, head and pronotum; F, apex of abdomen from bolow. G, Cardiastethus brounianus White. Male. Apex of abdomen from below. H, Cardiastethus fulvescens. (Walker). Male. Apex of abdomen from below. I-J, Cardiastethus noumcensis sp. nov. Male. I, apex of abdomen from below. Female. J, apex of abdomen from below. (All enlarged 40 diameters.)

Head. Length, 500-590; length in front of eyes, 170-210; length behind eyes, 120-140; length of eyes, 170-210; width across eyes, $410-470$; width of eyes, 120-150; interocular, 190-210; width of collum, 360-460.

Antennae. I, 120-140; II, 500-530. Remaining segments missing on all specimens.

Rostrum. I, 140-160; II, 380-450; III, 260-280.
Pronotum. Antcrior width, 380-470; posterior width, 930-1,000; median length, 400-470; lateral length, 550-600.

Scutellum. Anterior width, 590-650; median length, 450-470; lateral length, 480-550.

Legs	coxa	fomur	tibis	tarsi I	II	1UI	cl.
I	$260-320$	$500-530$	$520-600$	50	70	120	30
II	$210-240$	$520-550$	$520-640$	50	70	120	30
III	310	$640-740$	$800-900$				

Total length, 2,810-3,450; total width, 1,030-1,410; length abdomen, 1,360-1,790; length male genitalia, 530; length female genitalia, 350 .

Loc. New Zealand: Huia, Auckland (1'. E. Woodward, 13 May, 1950, 4 specimens); Paiaka, Manawatu (T. E. Woodward, 8 January, 1950). All specimens in the Woodward Collection.

Cardlastethus aridimpressus sp. nov.

Fig. 1, C-D
Dark brown. Legs, antennae and embolinm yellow. Eyes black. Ocelli red. Rostrum paler brown. Membrane fuliginous. Pilosity yellowish.

Flattened oval pilose. Collum very short. Pronotum rectangular (fig. 1, C), slightly convex, marginate anterior angles produced somewhat in front of fore margin. Behind fore margin a slightly raised punetate callus. Collar tenuous. Scutellum triangular, plane, slightly depressed posteriad, with many denticulations laterally. All femora somewhat incrassated. Male genitalia in form of an angular plate with a hook-like process.

The standard measurements (in mierons) from 4 specimens are:
Head. Total length, 380-460; length in front of eyes, 120-150; length behind eyes, 50 ; length of an eye, $200-270$; width aeross eyes, $450-500$; width of eye, 120-150; interocular, 170-240; width of collum, 320-400.

Antennac. I, 900-1,000; 11, 310-330; III, 190-220; IV, 240.
Rostrum. I, 160-220; II, 330-430; III, 310-330.
Pronotum. Anterior width, 450-520; posterior width, 760-930; median length, 290-450; lateral length, 430-530.

Scutellum. Anterior width, 520-690; median length, 350-480; lateral length, 360-570.

Legs	coxa	femur	tibia	tarsi I	II	III	4.
I	$240-280$	$400-450$	$380-450$	34	68	103	34
II	$220-260$	$360-400$	$360-450$	34	68	103	34
III	$200-260$	$510-550$	$530-570$	34	68	103	34

Total length, 2,400-2,800; width, $960-1,160$; length abdomen, 1,150-1,580; length male genitalia, 240-330; length female genitalia, 172.

Loc. South Australia: Wilpena Pound (G. F. Gross, 3 August, 1951, Holotype ô, Reg. Nos. E.S.I. 1480 and 120065), Mt. Lofty (Allotype q, Reg. No. I20066 and S. B. Curnow, Paratype b, Reg. No. 120067), Burnside (J. G. O. Tepper, 5 July, 1884, Paratype is, Reg. No. 120068).

Cardiastethus lincolnensis sp. hov.
Fig. 1, E-F
Very similar in colouration to C'. uridimpressus. Flattened, alongate oval, pilose. Collmm quite lomg. Pronotnm marginate. Lateral margin somewhat sinuate and diverging much more strongly posteriad than in C. aridimpressus. Gollar tentous. Seutellmm triangular, plane, slightly depressed posteriad with many denticulations laterally. Femora not incrassated. Male genitalia very similar to C aridimpressus.

The standard measurements (in microns) from 4 specimens are:
Head. Total length, 470-500; length in tront of eyes, 170-210; length behind eyes, $90-120$; length of an eye, 170.210 ; width across eyes, 400-470; width of an oye, 100-140; interocular, 170-210; width of eollum, 330-380.

Antennue. I, 100-120; II, 350-430; III, 290-345; IV, 280-310.
Fostrum. I, 90-140; II, 400-470; 111, 290-310.
Pronotum. Anterior width, 430-520; posterior width, 900-1,020; median length, 330-350; lateral length, 520-600.

Scutellum. Anterior width, 520-640; mediam length, $470-590$; lateral length, 470-620.

Legs	coxa	femur	tibia	Larsi 1	II	111	a.
I	$260-290$	$5(0)-520$	$480-520$	30	80	$100-120$	30
II	$220-240$	$460-510$	$500-530$	30	80	$100-120$	30
III	260	$64(0-670$	$690-740$	30	80	120	30

Total length, 2,070-2,870; width, 1,020-1,140; length abdomen, $1,240-1,480$; length male genitalia, 290; length female renitalia, 170-210.

Loc. South Australia: Jt. Lincoln (A. M. Lea, Holotype of, Reg. No, 120069) and 1 paratype ㅇ, Reg. No. I20070), Lucindale (A. M. Lea, 1 paratype ㅇ. Reg. No. 12007]) ; Tasmamia: Daveystown (H. Felix, Allotype \&, Reg. No. 120072) ; all in South Australian Museum.

Cardiastereus poweri White.
Cardiastethus poweri White, 1880, Ent. Mo. Mag. 16, 144.
'I'iceous brown or piceous black, opaque, clothed with longish cinereous hairs; head anteriorly and posteriorly, pronotum laterally and posteriorly, also
the seutellum apically, embolinm basally, clavus and the corimm for the most part more or less lighter, sometimes lightly reddish. The third segment of the antennae fuscous brown, fourth reddish, a whitish fascous nearly round spot before the base of the cuneus, membrane dilutely fuseons brown with thre lighter markings, two basally, and the other on the inner margin, veins poorly defined. Rustrum basally piceous, apically somewhat yellowish, legs piceous brown, basally tending lighter in colour, lemora apically, the apieal half of the tibiae and usually the tarsi brownish rellow, boty bencath a shining piceous brown, abdomen medianly lighter. Ilead and pronotum (auterior part of the dise excopted) transversely rughlose; soutelhom lightly rumbene pmelate, the posterior lohe of the pronotum anteriorly tranversely impressed or (o) with a small deep fovea; menthane of the female shortencel. Length, $1 \underline{d}-2$ mm.' (translated from White's Latiu description).

Loc. New Zealand.

Cabdiastethus broushanus White

Fig. 1, 1

Cardiastethus brouniunus White, 187s, Ent. Mo. Mag., 15. 159.
"Piccous brown, clothed with rather long pale hairs: cly pens, anterior mation of the embolium, and the corium rather paler, second joint of the antennae (apex excepted) and legs brownish sellow; membrane dark fuscons, with the outer three nerves margined with whitish. Head, pronothm and seutellum finely transversely rugose; transverse depression of the pronotum nearly obsolete: central depression of the seutelhm rather shallow.

Length, 2-2t mm." (White's deseription).
There are a number of specimens in the Woodward Collection which seen to fit this deseription. From some of them the following standard measurements have been obtained.

Head. Length, 450-480; length in front of eyes, 170; length behind eyes, 90; length of eyes, 100-210; width across cyes, $430-450$; width of eyes, $100-120$; interocular, 240 ; width of collum, 410.

Antennae. I, 100-120; II, 360; III, 220; IV, 240.
Rostrum. [, 160; II, 310-350; IIT, 260-810.
Prouolum. Anterior width, 450 ; posturior width, 1,000 ; median length, 430; lateral length, 570.

Scutellum. Anterior widtlı, 410; nedian length, 430; lateral lenth, 480-500.

Gross - A Revision of the Flower Bugs							
Luegs	coxa	femur	tibia	tarsi I	II	III	el
I	-	$520-550$	$500-520$	-	-	-	-
II	-	520	500	-	-	-	-
III	310	670	-	-	-	-	-

Total length, 1,980; total width, 1,100; length abdomen, 1,120-1,210; length male genitalia, 350 ; length female genitalia, 210.

Loc. New Zealand: Cable Bay, N. Auckland (T. E. Woodward, 27 Febmary. 1951, 3 specimens), Palaka, Manawatu (T. R. Woodward, 15th Jannary, 1050, by sweeping Muehenbeckio australis, 9 specimens), South West Tsland, Three Kings (T. E. Woodward, 13 February, 1951, 10 speeimens), Great Island, Three Kings, Wast Point (T. E. Woodward, 15 denuary, 1951, 3 specimens, ditto Tasman Valley, I specimen), Otaki Fiver, South of Levin, Wellington Province (T. E. Woodward, 30 January, 1951, 3 specimens), Huia, Auckland (T. F. Woodward, 13 April, 1950, 1 specimen), and Punakitere, near Kaikohe, North Auckland (T. H. Woodward, 11 Fobruary, 1951, one specimen).

Cardinsterthus fulnescens (Walk)

Fig. 1, H
Xylocoris Imbescens Walker, 1872, Cat. Het. 5, 160.
('ardiastethus ? fulwescens'Lethierry and Severin, 18!), Cat. Hem. 3, 250.
Amphiareus fulvescens Distant, 1904, A.M.N.H. (7) 14, 290. Fann. Brit. Ind. Rhyneh. 3, 4, fig. 3.

Curdiustethus fubescons Ioppins, 1909, Act. Soce. Sci. Femm. 37 (9), 19.
Xylocoris fumipennis Walker loc. cit.
Cardiastethus fumipennis Lethierry and Severin loc. cit.
Light yellow with long yellow hairs. Genmally the apical margin of the corimm and seldom the head, pronotum, clavus, the first segment of the antemae, and an apical band on the second, brown.

Sides of pronotum sintate, dise demply transversely impressed behind the middle, hind portion pumetate. Scotellom medially brodly transversely impressed, anteriorly punctate, terminally striated.

The standard data (in mierons) from the three specimens in the South Australian Museum are:

Hewl. Length, 380-480; length in front of eyes, 140-170; length behind eyes, $70-120$; length of eyes, $170-190$; width across eyes, $360-430$; width of eyes, 120-140; interocular, 120-140; width of collum, 290-310.

Antennae. I, 100-140; II, 360-460; III, 280-290; IV, 280-290.
Rostrum. I, 140; II, 400; III, 210-260.
Pronotum. Anterior width, 310-330; posterior width, 760-810; median length, 310-460; lateral length, 430-570.

Scutellum. Anterior width, 430-570; median length, 330-400; lateral length, 360-450.

Legs	roxa	femur	tibia	tarsi I	II	JII	i.
I	$240-290$	$480-530$	$510-580$	-	-	-	-
II	$220-260$	$480-530$	$600-670$	50	70	100	30
III	260	$620-720$	$770-930$	90	100	140	30

Total length, 2,170-2,410; total width, 770-950; length abdomen, 1,070-1,090; length male genitalia, 280; length female genitalia, 120.

Loc. Distributed widely over an area from Ceylon to Queensland. There are three specimens in the South Australian Museam from Malaya: Gap, Frazer's Hill (A. II. Lea and wife), New (Gumea: Mrt. Lamington, N.E. Papna (C. T. MeNamara), and Qucensland: Caims District (A. M. Tea, attracted to light).

Cardiasterthus noumeensis sp, nov.

Fig. 1, I-.J
Yellowish brown, eyes reddish brown. Collum, collar of pronotum, and two large patches on the anterior angles, clavus, scutcllum, runeus, embolium apieally, and underside brown.

Collum long, third and fourth segments of antemnae short. Lateral margins of pronotum rounded with four longr hairs and a number of shorter ones, fore margin straight, hind margin excavate. Pronotum strongly raised, immarginate, just anterior to middle a deep curved suture. Scutellum with strong denticulalations laterally, impressed behind the middle. Clavus and posterior margin of corium punctate.

Upper surface longly pilose, anal end equipped with long hairs. Male genitalia in the form of a roughly semicircular plate, with about 7 long backwardly directed hairs.

The standard measurements (in microns) from four speeimens are:
Head. Length, 380-550; length in front of eves, 110-220; length behind eyes, 80-90; length of eyes, 160-190; width across eyes, $380-470$; width of eyes, 120-160; interoeular, 90-160; width of collum, 300-400.

Antennac. I, 90-100; II, 220-360; 111, 170-210; IV, 190-240.

Rostrum. I, 120-170; I1, 300-450; III, 170-240.
Pronotum. Anterior width, 210-430; posterior width, 830-1,000; median length, 410-450; lateral length, 450-500.

Scutcllum. Anterior width, 430-517; median length, 220-360; lateral length. 280-430.

Lugs	coxa	femur	tibia	larsi I	II	ILI	el.
I	$260-330$	$380-480$	$380-470$	30	50	90	30
II	$190-220$	$360-460$	$410-500$	30	50	90	30
III	$190-260$	$480-600$	$620-750$	50	70	100	30

Total length, 2,170-2,460; total width, $800-1,020$; length abdomen, 1,030-1,330; length mate genitalia, 190-270; length female genitalia, 140.

Loc. New Caledonia: Noumea (A. Ml. Lea, Holotype of , Reg. No. I20073, Allotype of, Reg. No. 120074, and two paratypes, Reg. Nos. 120075-76) in the South Australian Museum.

Cardiastethtis munumus Poppius

Cardiastethus minutus Poppius, 1909, Act. Soc. Sc. Fenn. 37 (9), 20.
Shining, hemielytra duller, elothed with short semi-ereet brown hairs. Apical part of corium and cuneus, the sccond segment of the rostrum and the third and fourth antemal segments brown.

Head depressed, second segment of the antennae not longer than the head is wide, rostrum reaches the fore coxae. The dise of the pronotum is fairly deeply excavate behind the middle and transversely impressed. Corium and elavis very obscurely punctate. There is one specimen belonging to this speeies in the South Australian Museum and its standard measurements are:

Head. Lengtli, 360; length in front of eyes, 140 ; length behind eyes, 90 ; length of eyes, 110-140; width across eyes, 330 ; width of eyes, $100-120$; interoeular, 100 ; width of collum, 260.

Antennae. I, 90; II, 220; remainintr segments missing.
Rostrum. I, 90; II, 280; 1LI, 220.
Pronotum. Anterior width, 330; posterior width, 720; median length, 310; lateral leugth, 600.

Scutellum. Anterior widh, 400; median length, 350; lateral length, 360-380.

Legs	roxal	femur	tibia	tarsi I	II	III	el.
I	-	$380-400$	$380-410$	30	70	90	30
II	170	$350-380$	$410-430$	30	70	90	30
III	$170-190$	$450-470$	$580-600$	30	90	100	30

Total length, 2,300; total width, 830; length abdomen, 1,100; length male genitalia, 170.

Loc. New Guinea: Mt. Lamington, N.E. Papua, 1,300-1,500 ft. (C. H. MeNamara).

Poronotellus Kirkaldy

The genus Poronotellus has proved to be rather common in these regions and the species have proved extremely difficult to separate. To date it has not proved possible to come to any defimite conctusions about the status of forms. Accordingly, it is intended to investigate more fully this problem and to present. the results in a further paper to comprise, together with additional material on speeies in the other two subtamilies, part III of this revision.

Therefore the sections of the ceology and roogeography of the Anthocoridae have been introduced here, instead of at the end of the whole systematic account as originally intended.

ECOLOGY OF ANTHOCORIDAE

The minor habitats occupied by Austratian and Pacific Anthocoridac are fairly varied. Those species of Carliastethus for which the minor habitat is known are all subcortical, especially on eucalypts, with the exception of the two type specimens of Cardiastethus inquilinus China, which were found in an Oxyopid spider's nest. This spider's nest was located in a mallee area of South Australia in which in the main the only vegetation is depanperate species of Eucalyptus, mostly of the peeling "gum barked" type. These mallens very nearly duplicate the minor habitat of such eucalypts as Eucalyptus camaldulensis on which C. aridimpressus nov. frequently oceurs. Therefore it is not unlikely that C. inquilimus is also usually subeortical under encalypt bark.

The widespread Xylocoris flavipes Reuter. oceurs in stored grains. The family secms definitely to be predaceous, thouth it is not clear whether all are ereg predators like are Orins australis (Chima) and Orius insidiosus (Say) or whether some of the litter dwelling forms feed also on Collembola aud mites. The habits of X'ylocoris flavipes and of Cardiastethus spp. suggest that they may be egg predators for adult animals small enough for them to feed on, are rare in their two preferred minor habitats.

The widespread Lyotocoris campestris (Fab)) is at home in erevices and eracks in man made dwellings and is the only Anthoerid known to bite man.

The remaining forms all seem to be most likely assoriated with the litter layers of the forest floor. This has been proven for Falda queenstandica choss and several species of Lasiochitus.

The members of the fanily are defintely favoured by hot and warm conditions. There are thereforo ponsiderably more species in the tropies than in Whe temperater yones, and in any given temporature zone more species in the porest ma, hor habitats than in adjacent prassland or desert. Of the known Austratian species only Lyctocoris compestris, Curdiustethus inquitimus and 8 . aridimpressus oecur in major habitats drier than dry sclerophyll forest. On the other hand, no fewer than twolve species oreur in the Quemshand wet forests.

ZOOGEOGRAPHY OF AUSTRALIAN ANTHOCORIDAE

This preterence for hot aud wet conditions of Anthocoridae described above has considerable bearing on their use in helping to elucidate the puzaling facts of the present distribution of the Austratian biotas and its relation to past climatic history.

The present primary disjunction of the terrestrial biotas is largely a resultant of the distribution of land and sea in past geological ages. Within any me area which has had a geological history of relative stability and unity, any dis,unction now evident is mostly an ontcome of the past climatie history. Some gronps of the biota (e.g., plants and their associated herbivorous insects) are affected more than others (e.g., mammals, earnivorous insects, ete.) by these climatio changes.

In Australia the biota has at least two distinct elements with perhaps two, possibly three, other elements. The first of these is the "old world tropieal" or "northern" element varionsly called Tropical, Torresian, Papuan or IndoMalayan, The last has prionity but docs not necessarily reffect the origin of the dement, merely jts present centre of distribution and the pathway by which it entered Australia. Some eonstituents may be but birts of passage in the IudoMalayan tropies, havinir nerhaps had their greatest period of development in the northern temperate areas. This Indo-Malayau element ineludes amongst animals the insect families Anthocoridae, Pyrrhocoridae, Flatidae, Ricaniidae, pte. (Hemiptera) Papilionidae (Lepidoptera), ete., and of the vortebrate groups the whole of the Anstralian entheria and metatheria and modem Australian reptiles and amphibians. The Indo-Malayan element of the flora includes such fenera as Eugenin, Ficus, Terminulia, Erythrina (Coral trees), Cochlospermum (Kapok trees), Adamsonia (Baobab), Cocos (Coconut palm) and Pandanus. Also (see Errian element) Mibiscus, Maloa, Acacia, Cassia and Eucalyptus are really a part of this biota. Cenferally members of this element tend to be limited by the southern boundary of the borthern Anstralian tropical forest, savannahs and savanmah woodlands.

The seeond element of the biota is the so called "southern" element whose members show three different dypes of distribution, namely :
(1) Endemic to Australia and adjaeent regions, e.g., Casuarinaeeae in the plants and Melolonthinac (Coleopteras) amongst the animals.
(Q) Affinities with New Zcaland and oiten South America, e.g., the plant genera Nothofagus, Araucuria, part of the family Podoearpaceae and the family Epacridaceae and the animal groups Polorididae, Isoderminae (Hemiptera), part of the liphiidae (Hymenoptera), and of the Dynastinae (Coleoptera).
(3) Affonties with South Africa and Madarascar only (Proteaceae, part of Podocarpaceae).
Some authors recognize one or more of these three as being entirely different biotas, but it will probably prove that (2) and (2) are but wider ranging wind borne or island hopping members of (1). Which extended their distribution during Pleistocene and earlier ehanges of sea level. This whole southern element, or various parts of it, has been called by a varict, of names (e.g., Antarctie, Bassian and Autochthonian) and it generally tends to be limited by the northern horder of the southern humid regions.

Lastly, there is the desert hiota. This has been ennsidered a distinet element by some authors (e.g., "Eyrean" of Spencer and "Eremian" of Tate), but this can only be justified on the basis of the great modification that plants and most animals most adopt in order to survive in the desert. Apart from these physiolomically cssential modifieations, the Anstralian desert biota is clearly eomprised of demonstratable elements of the contiguous "northern" and "southern" biotas. Acturlly, in plants it is much the same group the world over that may enter desert or similar areas, e.g., Acacia (Australian, African, Asian and North American deserts, note also the closely related North American Prosopis), Atriplex (Australian, African, Asian and North Ameriean deserts), Triodia (Australian, Asian and North American deserts), and many others.

This restrietion on what groups of plants and animals can enter desert regions, together with the tendeney of strong prevailing winds to blow around the world latitudinally (e.g., parallel to the deserts, not aeross them) may well explain the primary disjunction of the Anstralian biota into two or (comentine the Eyrean) three elements. For if the eontinent has been divided latitudinally by the same belt of desert as now exists (this would have extended probably from coast to eoast before the Monnt Koseiusko and New Guinea uplifts), the southern clement would have been effeetively isolated from the nothern. If this
state of affairs came into boing at the heginning of the Tertiary, the "souther" element would have had time to develop its distinctive features.

We cannot assume this barrier to have been any earlier than the beginning of the Tertiary, for during the Upper (retaceons plant species were notorionsly widesprodd. During the progress of the Tertiary progressive restriction of distribution is evident in plants. (C'ookson and l'ike, 1953, a, b, 1954; Cookson, 1953, a, h, 1954).

The presme of a few mombers of the one element in the area nocupied in the main by monbers of the other, and the presences of both torether in the desert, scems to be explicable mostly on the hasis of descrt adsuption, for it is usually groups apable of desert adaption that oecur in the region of the nther element. A whole suite of adaptable genora of the Indo-Malayan olement Las moved into the desert from the north (Acucia, Cassia, Malva, Eucalyptus, Hibiscus, and Nelaleuca amongst the plants) or has been trapped in favomable poekets during one of the north or sonth ascillations of the position of the somtinnous band of descrt (in plants Livistonn marine, Macroaamia macaonmelli, and ficus platypoda) with some actually crossing the southern boundary of the desert into the southern humid formations (Acacia, Eucalyptus, Molatownt). Aqually, a group of adaptable gencra were able to penetrate the desert from the south and usually make their way through to the north (Hakea, Grevillea, Brachychiton amougst the plants),

At the end of the Plionene the Koscinsko uplift formed a moist corridor of forest formations traversing the area formerly covered by part of the desert, and breaking the continuity of this helt in the cast. This gave considurable opportunity for mixing the "northern" and "sonthern" elcments, and this seems to have oceurred. As is to be expected, the preatest mixing has occurred in this north-sonth moist corridor with the cffect falling off the further the distanre from the corridor until, in such places as the Darwin and Perth areas, practically the only members of an extraneous clement present are those that have eome through via the desert. No group shows the effeet of this moist corridor better than the Anthocoridae, for this undonhtnily tropieal ow "northern" group have fourteen species in Qucensland, six in New South Wales, five in Victoria, five it South Anstralia (one of which is introdnced), and one (introduced) in Wertern Australia.

This theory of the permanence of the desert belts is not in aceord with the concept of a vast aridity covering the whole continemt as postubated by Crocker and Wood (1947) during the "mid recent high" in seal level. Theix "great. urid" hypothesis is at the moment under criticism trom other quarters. Tindale:
(1947, a and b, 1949, 1952) and Condon (1954) have shown that most zontogical data, and even a considerablo part of the botanical distributions employed by Crocker and Wood as proot of their "great arid," are better explained by assuming a steady increase in aridity in the sonthem regions from the end of the Pleistocene right up to the present. This may involve a steady shifting south of the desert belt.

Some investigations of the author have tended to confirm these later views. The diseovery of "myall" (Acaciu sowdeni) growing near the southern end of Lake Eyre South snggests sather an earlier continnous belt of "mrall" stretching from Kingoonya around the north end of Latse Torrens to the Broken Hill district and disjoined into two species by the present aridity rather than that the distribution of the two species, A. somdeni and A. Whderi reflects emergence from refuges in the Cawler Ranges and Flinders Ranges into which they retreated during the "great arid." The Gawler Ranges would provide little or no better romditions for such a plant than the smrounding countryside for the ranges Shemselves are of porphyrs, onto which myall never ventures, with wide loam fiats (on which myall now oceurs) between, and which receive little, it any, more rain than the main areas of myall distribution.

Even more difficult to explain by the "ereat arid" are the presence of suchs forms as Cardiustethus aridimpressus and the butterfly Meteronympha merope merope in favoured gorges int Wilpena lound, over 90 miles away from their next main occurrences at Mount Romarkahle. (Ifoteromympha merope merope alson serums in fovoured gorges in the Ekder Lange 10 mites west of Witpena Pomul.) A stunted mallee form of Eucalyptus daeophore oceurs in the highest 300 feet of the Elder Range (3,700 feet) and as a similar though less stunted patch in the Clane reqion. Its man opeurrence is as large trees on Mt. Remarkable and in Alligator Gorge, 90 miles to the south or 70 miles to north respeetively. Both the Elder Range patch and the Clare patch eould hardly have survived more ardity than at present exists, nor could the small clumps of onty a tow tree terns (Dirlismiu antarctica) present in Morialta Fiorge, and some other isolated localitips in South Anstralia when the white man came. This atso applies to the small patch now existent at the Silverbma Falls in the Grampians of Vietoria.

Firratum. On p. 153 of Part 1 of this paper Lasidiella should read as Lasiellidea.

